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it can be shown that any optimal strategy is asymmetric and non-step-wise in character for a 
corresponding choice of the numbers p and b. 
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ONE SELFMODELLING SOLUTION OF A PROBLEM ON- A PLANAR LAMINAR JET* 

G.I. BURDE 

The problem of the flow of a laminar jet which does not mix with the 
fluid surrounding it is treated in the boundary-layer approximation. It 
is assumed that both fluids are incompressible, that their surface of 
separation is smooth and that the jet does not break up. A selfmodelling 
solution (in Mieses variables) of the planar problem is obtained for the 
special case when the viscosities of the fluids are inversely pro- 
portional to their densities. 

This problem has been treated previously in the case of a planar 
/l, 2/ and axially symmetric /3-7/ jet using different versions of the 
integral method /l, 3, 5, 7/ and also using an asymptotic method /2, 4, 
6/ which yields the solution at large distances from the source. 

1. The flow domain is 

Fig.1 

shown schematically in Fig.1. Quantities referring to the emitted 
and external fluids are denoted by means of the indices 1 and 2. 
The equations of motion in the boundary layer approximation have 
the form 

(1.1) 

The conditions for the continuity of the velocities and 
the stresses on the boundary of separation in this approximation 

as well as the conditions on the axis of the jet and at infinity and the integral relationships 
expressing the laws of conservation of mass and momentum are represented in the form (only 
the upper half-plane is considered in view of the symmetry of the problem) 

Y = Y, (x), n, = up, fLldU,lay = ~&L,lay (1.2) 

Y = 0, L'I = 0, &L,lf3y = 0; y+ 00, uz = 0 

Y*(E) 

5 Pl%dY= +, 

U*!L, 

\ ~~124~ + 5 wz*dy =f (1.3) 
0 0 V*(X) 
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where Q and J are specified constant quantities (the flow rate and momentum of the jet). 
We shall solve problem (l.l)-(1.3) in Mieses variables /8/: % = z, n =$(r, y) where J- 

is the stream function. Relationships (l.l)-(1.3) are then replaced by an equivalent system 
of equalities in the variables % and n 
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(1.6) 

Here g is the constant value of the stream function on the boundary of separation of the 
fluids, and n-((5) is the value of the stream function which corresponds to y--t CO and 
which is determined from the last condition of (1.2). 

The relationships 

are used 
of these 

2. 

to transform the solution to the initial variables. 11 (x, y) can be found by inversion 
relationships. 

where bi 

we shall seek a selfmodelling solution of problem (1.4)-(1.6) in the form 

ui = %-"zfi (~0~); wi = %-"a (n + b,) (2.1) 

are constants. Substituting (2.1) into Eq.(1.4), we obtain equations for ji, the 

(1.7) 

solutions of which are 

fi = Ci - (6vi)-lwi2 

where Ci are constants. From these solutions and (2.1), we obtain 

Ui = Ci%_'!, - (6vi%)-'(n + bl)" (2.2) 

Conditions (1.5) and (1.6) are used to determine the constants C,, C,, b, and b, . It 
follows from the last condition of (1.5) that b, = 0. From the remaining conditions of (1.5) 
it follows that 

C, = C,, q*/vl = (q + b,)*/v, (2.3) 

pxqh = IQ (q + bdv, (2.4) 

Conditions (2.3) and (2.4) are compatible if the relationship 

is satisfied. 
Assuming that condition (2.5) is satisfied, we determine the constant b2 from (2.3) and 

find the solution in the form (we shall subsequently omittheindex on the constant C) 

u1 = C%-'1~ - (6v,%)-'I)* (2.6) 

u, = Cg-‘l~ - (6v&)-’ (11 - q + qIx)2, x = l/vl/va 

The constant C is determined from the last condition of (1.6), to use which it is necess- 
ary to find the function n..(E). From the relationship ae(%,qm) = 0 we obtain 

n_ = 1/G%'/a + q (1 - x-1) (2.7) 

Substituting (2.6) into (1.6) and using (2.7) and (2.51, we arrive, after some reduction, 
at the relationship 

=lspsl/GyzcI' = =l,J (2.8) 

Eqs.(2.6) and (2.8) and the first equation of (1.6) solve the problem which has been 
posed in the variables %, n. Let us obtain the solution in the initial variables using 
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formulae (1.7). First we write out the expression forthehalf-width of the jet 

(2.9) 

when Y < Y* (the fluid in the jet) we find y(x,n) from the first formula of (1.7) and, 
by inverting the resulting expression, we arrive at the formula 

Substituting (2.10) into the first formula of (2.6) or differentiating (2.10) with respect 
to y we find 

U1 = 4Cx-'/se6 (e6 + 1)-2 (2.11) 

In a similar way but using the second formula of (1.7), we obtain, when y> y, , 

+ q (1 - x-1) 

‘p (z) = [(~/WV, x”r + q)I(I/Wy, da - rl)ll-’ 

(2.12) 

Whence, we find 

Z+ = 4Cx-'h~ (x)& [(p (s)& + 11m2 (2.13) 

Expressions for the second component of the velocity u can be obtained from (2.10) and 
(2.12) using the relationship u = -d~idx. 

Hence, when condition (2.5) is satisfied, formulae (2.8)-(2.13) and the first formula of 
(1.6) yield a solution of the problem, which one can confirm by directly substituting this 
solution into Eqs.(l.l)-(1.3). By considering the asymptotic form of this solution when 

X>l it is possible to obtain expressions which are identical to those given in /2/ subject 
to condition (2.5). 
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